在本教程中,我们将编写一个程序,从最小堆中查找第k个最小元素。
我们将使用优先级队列来解决该问题。让我们看看完成程序的步骤。
用正确的值初始化最小堆。
创建一个优先级队列并插入min-heap的根节点。
编写一个循环k-1次的循环。
从队列中弹出最小的元素。
将上述节点的左节点和右节点添加到优先级队列中。
优先级队列中的最大元素现在是第k个最大元素。
返回。
让我们看一下代码。
#include <bits/stdc++.h> using namespace std; struct Heap { vector<int> elemets; int n; Heap(int i = 0): n(i) { elemets = vector<int>(n); } }; inline int leftIndex(int i) { return 2 * i + 1; } inline int rightIndex(int i) { return 2 * i + 2; } int findKthGreatestElement(Heap &heap, int k) { priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>>queue; queue.push(make_pair(heap.elemets[0], 0)); for (int i = 0; i < k - 1; ++i) { int node = queue.top().second; queue.pop(); int left = leftIndex(node), right = rightIndex(node); if (left < heap.n) { queue.push(make_pair(heap.elemets[left], left)); } if (right < heap.n) { queue.push(make_pair(heap.elemets[right], right)); } } return queue.top().first; } int main() { Heap heap(10); heap.elemets = vector<int>{ 10, 14, 19, 24, 32, 41, 27, 44, 35, 33 }; cout << findKthGreatestElement(heap, 4) << endl; return 0; }
输出结果
如果运行上面的代码,则将得到以下结果。
24