opencv3/C++基于颜色的目标跟踪方式

inRange函数

void inRange(InputArray src, InputArray lowerb, InputArray upperb, OutputArray dst);

src:输入图像;

lowerb:下边界数组,阈值下限;

upperb:上边界数组,阈值上限;

dst:输出图像;

颜色范围如图:

示例:

捕获摄像头中的黄色方块

#include<opencv2/opencv.hpp>
using namespace cv;

int main()
{
	VideoCapture capture;
	capture.open(0);
	if(!capture.isOpened())
	{
		printf("can not open video file  \n");
		return -1;
	}
	Mat frame, dst;
	Mat kernel;
	//开操作处理
	kernel = getStructuringElement(MORPH_RECT, Size(5, 5));

	namedWindow("input", CV_WINDOW_AUTOSIZE);
	namedWindow("output", CV_WINDOW_AUTOSIZE);
	std::vector<std::vector<Point>> contours;
	std::vector<Vec4i> hireachy;
	Rect rect;
	Point2f center;
	float radius=20;

	while (capture.read(frame))
	{	
		//blur(frame, dst, Size(5,5));
		inRange(frame, Scalar(0,80,80), Scalar(50,255,255), dst);
		//开操作
		morphologyEx(dst,dst,MORPH_OPEN,kernel);
		//获取边界
		findContours(dst, contours, hireachy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point(0,0));
		//框选面积最大的边界
		if (contours.size() > 0)
		{
			double maxArea=0;
			for (int i = 0; i < contours.size(); i++)
			{
				double area = contourArea(contours[static_cast<int>(i)]);
				if (area > maxArea)
				{
					maxArea = area;
					rect = boundingRect(contours[static_cast<int>(i)]);
					minEnclosingCircle(contours[static_cast<int>(i)], center, radius);
				}
			}
		}
		//矩形框
		//rectangle(frame,rect, Scalar(0,255,0),2);
		//圆形框
		circle(frame, Point(center.x,center.y), (int)radius, Scalar(0,255,0), 2);
		imshow("input", frame);
		imshow("output", dst);

		waitKey(100);
	}

	capture.release();
	return 0;
}

关于颜色范围的选取:

有朋友问颜色范围的事,比如我们选择某个偏红色的范围,如色环图中这个区间即BGR(0,128,255)到BGR(255,0,213);则B、G、R这三个通道的范围分别为0-255,0-128,213-255。因此阈值下限lowerb=Scalar(0,0,213),阈值上限upperb=Scalar(255,128,255)。

以上这篇opencv3/C++基于颜色的目标跟踪方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持鸟哥教程(niaoge.com)。

声明:本文内容来源于网络,版权归原作者所有,内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:notice#niaoge.com(发邮件时,请将#更换为@)进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。